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1 Introduction

This report outlines the use of clustering and likelihood algorithms in analyzing muon
radiography data for the selection of likely locations of dense high-Z material (DHZ)
in a cargo container. The distance function is physically motivated. The likely loca-
tions are intended primarily as an input to existing support vector machine (SVM)
classifiers developed independently from this analysis. It may prove possible, given a
good density function, to also independently locate SNM in some situations. The re-
port outlines my thought process and ends with a results section from Matlab analysis
on standard synthetic data sets.

2 Define Relevant Data

To a fair approximation, muons of a given energy E passing through a thickness L
of a material characterized by radiation length L0 inherit a nearly Gaussian angular
distribution of width θ0 given by

θ0 =

(
13.6MeV

E

) √
L

L0

[
1 + 0.038ln

(
L

L0

)]
. (1)

1



From Eq. 1, I define the scattering significance value S that is the energy normal-
ized scattering width:

S ≡ θE

13.6MeV
=

√
L

L0

[
1 + 0.038ln

(
L

L0

)]
(2)

for a given muon of energy E scattered with a total angle θ. Similarly, define the unit
significance S∗ to be that associated with scattering angle θ0.

Thus, materials that tend to provide more large-significance muons are those that
are thicker and or have smaller radiation lengths. Some representative radiation
lengths (given in cm) are 36(water), 1.76(Fe), 0.56(Pb), 0.353(Pu), and 0.307(U).
Hopefully, it will be possible to detect the presence of DHZ by their tendency to
produce high-significance muons.

Consider the following representative scenario for muon radiography. Let a ship-
ping container (2.4m wide by 6.0m long by 2.4m high) hold 110 spherical half-density
iron balls of radius 20cm. They are distributed in two layers of 55 each. This cargo
represents 14 metric tons (the approximate weight limit) and covers about half of the
container bed. Since the spheres are half density, the approximate radiation length
is 3.5cm. Also included are one sphere of U of radius 6.33cm and one sphere of
Pu of radius 4.22cm. This scenario is similar to a combined ‘1c’ and ‘2c’ test case
of Katz and Borozdin [1]. One can calculate the number of muons N exceeding a
given significance value associated with the three cargo materials in a given amount
of time t and the density of detected muon scattering locations D (events per cubic
meter) assuming perfect single-scatter ray track knowledge. These calculations are
intended to be illustrative and possibly even representative of simple muon tracking
reconstruction capability. For a one minute experiment (95000 detectable muons) I
calculate the following table.
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N D
(S/S∗) Fe U Pu Fe U Pu

0 47981 86 38 25468 80569 120782
1 35352 74 31 18765 69731 99134
2 24060 63 25 12771 59200 78564
3 15032 52 19 7979 49254 59994
4 8579 43 14 4554 40127 44063
5 4455 34 10 2365 31988 31078
6 2098 27 7 1114 24933 21021
7 894 20 4 475 18992 13620
8 344 15 3 183 14130 8445
9 119 11 2 63 10263 5006
10 37 8 1 20 7274 2836
11 10 5 0 6 5029 1534
12 3 4 0 1 3391 792
13 1 2 0 0 2229 390
14 0 2 0 0 1428 183

While a large amount of muons are affected by the iron, the angular distribution
decays rapidly relative to U or Pu. In order for a clustering approach to be effective,
some nonnegligible number of muons must be associated with DHZ while at the
same time not be overwhelmed by the number of muons associated with the iron.
The expectation is that NDHZ < NFe but that NDHZ � NFe should be avoided
when possible. The detection of a cluster can be made with as few as two or three
muons. An accurate estimate of a cluster centroid depends upon many factors but
certainly requires more than just a few muons, say NDHZ ≥ N∗ ∼ 10. Also, clustering
techniques and likely-location estimation will perform better when DDHZ � DFe.
Finally, the real-time computational requirement coupled with the computational
efficiency of clustering imposes a limit NFe+NDHZ ≤ Ncomp ∼ 1000. These clustering
criteria are easily met for the U case using a significance cutoff of around nine. The
Pu case seems intractable for a time of one minute. Even an experiment time of 10
minutes (data not shown, but can be inferred from the table) still seems difficult.

The cases thus far described represent somewhat challenging scenarios. Halving
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the amount of iron (more representative?) would provide a significant improvement
in clustering ability, especially in the difficult Pu case. The actual cutoff value could
be estimated in terms of the size of the SNM to be detected, the experiment time
and the cargo weight.

Now that the muons of interest have been identified (the subset whose signifi-
cance value exceeds some cutoff) the data property for clustering must be identified.
In this case we consider the most likely location of a single-scattering event. This
location p is the point of closest approach (PoCA) of the experimentally measured
incoming and outgoing muon paths illustrated in Fig. 1. The incoming muon path
is determined by detector locations c and d. The outgoing muon path is determined
by detector locations g and h. The shortest line segment connecting these to lines is
that connecting points a and b. The center of this line segment is the PoCA location
p. For all sufficiently significant muons the PoCA locations are the data set on which
clustering will be performed.

The nonideal nature of the PoCA due to small angle scattering uncertainty and
the single-scatter assumption is addressed in the definition of the distance function
in a later section.

One might be concerned that if a small subset of the total number of muons is
used then information is being lost unnecessarily. Two things need to be remembered.
First, the entire collection of muons is used to define the subset on which clustering
should be performed. Second, the likely locations of DHZ given by a clustering are
only input locations to a DHZ analysis which does consider all muons relevant to that
particular container location vicinity.

3 Formulate a Distance Function

A good distance function will respect our directional knowledge in the uncertainty
in the PoCA location and the characteristic size of objects for detection. Generally
we know that uncertainty is large in directions along ray paths and relatively small
in orthogonal directions. I begin with a single-muon motivated coordinate system
with orthonormal basis { ~eji} = {~e1, ~e2, ~e3}. The first index j is a muon index and the
second index i is a coordinate direction index. The first basis vector is
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~ej1 ≡
~b− ~a∣∣∣~b− ~a

∣∣∣ (3)

detector #1

detector #2

detector #3

detector #4

c

d

g

h

a

b

p

incoming path

outgoing path

Figure 1: Schematic of the point of closest approach (PoCA) idea. All points with roman labels
are 3D locations. The entering muon path is defined by c and d. The exiting muon path is defined
by g and h. The PoCA location p is given by the center of the shortest line segment (endpoints a and
b) connecting these two paths. The orthonormal vectors ~ei are the principal directions associated
with the muon path.
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which is perpendicular to both rays. It is the direction from p along the line segment
āb. It is the direction vector that identifies the quickest possible path away from the
ray paths. I have adopted vector notation to identify point locations: ~a is the vector
locating point a relative to an arbitrary fixed origin.

Next, formulate the perpendicular basis vector that identifies the angular deflec-
tion from incoming to outgoing raypath. Let

~rin ≡
~c− ~a

|~c− ~a|
(4)

and

~rout ≡
~g −~b∣∣∣~g −~b

∣∣∣ . (5)

Then,

~ej2 ≡
~rin + ~rout

| ~rin − ~rout|
. (6)

And finally, the third basis vector is the direction most closely directed along the two
ray paths:

~ej3 ≡ ~ej1 × ~ej2. (7)

Now a distance function can be defined relative to a single muon that can in-
corporate physical knowledge of the PoCA uncertainties. Let the distance from an
arbitrary point s to the jth PoCA location pj be

dsj ≡

√√√√ 3∑
i=1

(αji (~s− ~pj) · ~eji)
2. (8)

The distance is weighted in the three local coordinate directions by paramters αji.
Since the basis vectors and weights are dependent upon the specific muon, the distance
function is not symmetric between two PoCA location pj and pk. That is, djk 6= dkj

in general. A symmetric distance metric is formed by choosing
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djk = dkj ≡

√√√√ 3∑
i=1

(αji (~pk − ~pj) · ~eji)
2 +

√√√√ 3∑
i=1

(αki (~pj − ~pk) · ~eki)
2. (9)

Of course, when all α = 1, the distance metric is proportional to the Euclidean
distance. Further discussion on the choice of the αji is addressed in the section on
centroid and density calculations.

A distance function is also needed to determine a centroid location s∗ relative to a
cluster of n PoCA locations pk. I propose that s∗ is the point providing the solution
to the following minimization problem.

r̃t = min
s

1

n

n∑
k=1

√√√√ 3∑
i=1

(αki (~s− ~pk) · ~eki)
2. (10)

Now, r̃t is identified as a characteristic length scale of the cluster t. It can be used to
define a cluster density

ρt ≡
n

r̃3
t

. (11)

I now turn to the question of selecting the weights αji. The physicists suggest that
αj1 = αj2 = αj3/

√
3δθ, where δθ = arccos (− ~rin · ~rout) is the angle between incoming

and outgoing rays. Furthermore, I expect that αj1 ∝
∣∣∣~a−~b

∣∣∣−1

and that αj2 ∝ δθ−1.

αj1 = αj2 =
1∣∣∣~a−~b
∣∣∣ · δθ , (12)

αj3 =

√
3∣∣∣~a−~b

∣∣∣ . (13)

While αj3 can tend to be relatively small for typical deflection angles of several
milliradians, these equations certainly reflect the idea that uncertainties are greater
along ray paths.

Finally, since objects have finite length scales, it seems unwise to over-penalize
any distance differences within this length scale. For some applications, I propose the
use of a modified distance funciton Xsj given a characteristic object size a:
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Xsj = dsj [1− exp (− (dsj/a)p)] . (14)

This modified distance provides a smooth transition between distances large com-
pared to a, where Xsj ≈ dsj, and an effective small distance region of radius r ≈ a.
Figure 2 shows this modified distance function for a few values of the parameter p.
The choice of p will depend upon the particular application. At present I have not
utilized such a distance function due to the complexity of use in potential function
applications (calculating derivatives). Instead I make use of modified potentials which
I present in a later section.
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Figure 2: Modified distance function plots (see Eq. 14) for different values of p.
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4 Data Clustering Approach

For this work, the primary interest is in identifying or locating compact objects of
size characteristic of the PoCA location uncertainty. Objects are expected to be
non-extended, solid, and of some minimum characteristic size. However, it may be
important to identify embedded objects. For example, a small amount of DHZ sur-
rounded by a relatively large amount of other material, such as iron. Thus, any data
clustering algorithm should be sensitive to these geometries.

Relevant example objects include spheres, hemispheres, cylinders, rectangular
blocks, and irregular 3D compact solids. Object examples falling outside our cluster-
ing scheme include extended rods, distributed small objects, powders, etc.

Because of the simplicity of the objects sought, it makes sense to use a K-means
based clustering method. I am working with a dynamic membership scheme that
iteratively tests the largest cluster for possible division. This process continues until
stability is reached. An outer computational loop governs the selection of a division
parameter γ and exits according to some stopping criteria. An additional loop allows
for periodic data reclustering with freedom for data points to move between clusters
if favorable. A flow chart is shown in Fig. 2. Details of the algorithm are given in
the working Matlab code available from the author. The clustering algorithm uses
the basic distance function, Eq. 8, finds cluster centroids according to Eq. 10, and
computes cluster densities using Eq. 11.

Representative clustering results applied to six cargo container scenarios are shown
in Figures 4-9. I use the basic distance function given by Equation 8 and the algo-
rithm given in Figure 3 applied to the 100 most significant muons from a one minute
simulation. Perfect muon energy knowledge is assumed.

Each of the six figures shows two views of clustering results. Subfigures (a) show
the PoCA locations of the most significant muons (black dots), the cluster centroids
(bold blue dots), and, if it exists, a surface rendering of the DHZ. Subfigures (b)
are either close-in views of the region containing DHZ or a different 3D view of the
container depending upon the scenario. The six scenarios are given by the Katz-
Borozdin notation 1a 1c 2a 2c 6a 6c, respectively. Numbers indicate centrally located
DHZ: 1 = 6.33cm radius sphere of uranium; 2 = 4.22cm radius sphere of plutonium;
6 = no DHZ. Letters indicate non-DHZ background material: a = no material; c =
110 half-density iron spheres of radius 20 cm placed in two layers in the lower part of
the container; and e = 9 cm thick Pb slabs on top and bottom of container.
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I also performed clustering calculations on 100 realizations of each of the scenarios
1a, 1c, and 1e. For each I retained up to 10 likely locations returned by the clus-
tering algorithm. From this list I selected, for each realization, the location closest
to the actual location of the DHZ. Figure 10 shows histogram plots of the number
of cluster locations within a given distance of the correct location (in units of DHZ
radius). The results are encouraging, but fall short of the high accuracy needed for
the application. K-means based clustering results can vary significantly with cluster
division and stopping criteria so that centroid locations vary by distances comparable
to cluster sizes.
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Figure 3: Flow chart of the clustering method.
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Figure 4: Scenario 1a.
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Figure 5: Scenario 1c.
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Figure 6: Scenario 2a.
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Figure 7: Scenario 2c.
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Figure 8: Scenario 6a.
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Figure 9: Scenario 6c.
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Figure 10: Clustering location summary for scenarios 1a, 1c, and 1e. The percent of
best locations falling within a given distance of the DHZ location are plotted for a
one minute experiment.
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5 Likelihood Function Approach

Instead of relying on parameter selection in clustering techniques, suppose we develop
a probability distribution associated with each muon of interest that tells us the
likelihood that the muon underwent scattering at a particular container location (in
the single-scatter approximation). Then the maxima of a weighted sum of these
functions could reveal likely DHZ locations.

One sucn function assumes a Gaussian likelihood cloud based on PoCA locations
and the modified distance function (Eq. 14).

U (s) =
k∑

j=1

Sjexp
(
−X2

sj

)
(15)

where Sj is the muon scattering significance and the index j sums over the subset of k
muons considered relevant. Once again, and for the reasons outlined in the previous
sections, we consider a relatively small subset of the total muon count consisting
of those of largest S. The goal is to seek the local maxima of U(s) and use these
locations, or some subset of them, as likely locations of DHZ as test locations in a
pretrained SVM.

Finding all the local maxima of U(s) seems at first a computationally intensive
task. Several important observations reduce the complexity greatly. First, the desired
spatial resolution is only equal to or somewhat less than the characteristic size of any
suspected DHZ. Second, we know a priori that the total number of maxima h is less
than or equal to k. Third, each local basin in −U(s) contains at least one point from
the set pj. I state this as a reasonable conjecture; to my knowledge, no proof exists.
Fourth, the derivative of U(s) is straightforward:

∇U =
k∑

j=1

2SjXsjexp
(
−X2

sj

)
∇Xsj. (16)

∇Xsj = {1 + [p (dsj/a)p − 1] exp [− (dsj/a)p]}∇dsj. (17)

∇dsj =
1

dsj

3∑
i=1

[(
α2

ji (~s− ~pj) · ~eji

)
((~eji · x̂) x̂ + (~eji · ŷ) ŷ + (~eji · ẑ) ẑ)

]
. (18)
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Taken together, the above observations suggest the method of solution: using each
pj as an initial point, apply gradient ascent to find a local maximum to within the
desired spatial tolerance.

The above approach is computationally intensive. A simpler approach that yields
very similar results is to use the simpler potential function

U (s) =
k∑

j=1

Sj

max (a, dsj)
(19)

which looks like a graviational potential. The use of this function is difficult to
defend. I use it here because results are obtained quickly and results are similar to
those obtained by more defensible methods. Eventually, I will revert back to the
use of Eq. 15 with quick search methods. But for the present consider the following
results.

The merit of any likely-location method is that it returns a location close to the
actual location of DHZ. I performed a likely-location analysis based on Eq. 19 for 100
realizations of scenarios 1, 2 and 3 with backgrounds a, c, d, and e for experiment
times from 20 to 300 seconds. Figures 11, 12, and 12 show results in terms of the
percent of best locations that fell within a given distance of the actual DHZ center
location. Distances are measured in terms of DHZ radii (6.33 cm for the ‘1’ cases,
4.22 cm for the ‘2’ cases, and 5.00 cm for the ‘3’ cases). The results are promising for
the ‘1’ cases and disappointing for the other cases as expected.

It should be noted that for all of these cases, unshielded radioactive DHZ will be
detectable by other means. Locations of shielded DHZ should be easier to detect by
the methods outlined in this report. The test cases represent challenging scenarios.
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Figure 11: Likely location results for scenarios 1a, 1c, 1d, and 1e based on a test
likelihood potential function. Best location results for different data collection times
are shown as different colors.

22



0 1 2 3 4 5
0

20

40

60

80

100
Scenario 2a

Distance (D) in Object Radii

%
 o

f L
oc

at
io

ns
 w

ith
in

 D
 o

f D
H

Z 
C

en
te

r

20 sec
30 sec
40 sec
50 sec
60 sec
90 sec
120 sec
180 sec
240 sec
300 sec

0 1 2 3 4 5
0

20

40

60

80

100
Scenario 2c

Distance (D) in Object Radii

%
 o

f L
oc

at
io

ns
 w

ith
in

 D
 o

f D
H

Z 
C

en
te

r

0 1 2 3 4 5
0

20

40

60

80

100
Scenario 2d

Distance (D) in Object Radii

%
 o

f L
oc

at
io

ns
 w

ith
in

 D
 o

f D
H

Z 
C

en
te

r

0 1 2 3 4 5
0

20

40

60

80

100
Scenario 2e

Distance (D) in Object Radii

%
 o

f L
oc

at
io

ns
 w

ith
in

 D
 o

f D
H

Z 
C

en
te

r

Figure 12: Likely location results for scenarios 2a, 2c, 2d, and 2e based on a test
likelihood potential function. Best location results for different data collection times
are shown as different colors.
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Figure 13: Likely location results for scenarios 3a, 3c, 3d, and 3e based on a test
likelihood potential function. Best location results for different data collection times
are shown as different colors.
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6 Conclusion

This work is ongoing and should not be considered a final analysis. Areas of current
work include (1) the inclusion of stopped muon information, (2) the effects of par-
tial energy knowledge, (3) employing smart optimization schemes, and (4) building
defensible likelihood functions.

This work was supported by the Los Alamos National Laboratory LDRD program
and the United States Department of Energy.
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